Extracellular domain c-kit mutation with duplication of Ser501Ala502 found in gastrointestinal stromal tumors is more imatinib- and nilotinib-sensitive than that with duplication of Ala502Tyr503

Lab Invest. 2013 May;93(5):502-7. doi: 10.1038/labinvest.2013.43. Epub 2013 Mar 4.

Abstract

The great majority of gastrointestinal stromal tumors (GISTs) have gain-of-function mutations of the c-kit gene, which encodes KIT receptor tyrosine kinase. Most of the mutations are located at exon 11, but some are at exon 9 or at other exons. Mutation types at exon 11 vary, while most mutations at exon 9 are a particular duplication of Ala502Tyr503 (KIT-Dup-Ala502Tyr503). Recently a duplication of Ser501Ala502 (KIT-Dup-Ser501Ala502) at exon 9 has been reported in two cases of pediatric mastocytosis and one case of adult mast cell leukemia. Although KIT-Dup-Ser501Ala502 had not been reported in GISTs, we found two GIST cases possessing the mutation in 45 GIST cases with exon 9 c-kit gene mutations, among a total of approximately 500 GIST cases examined. In this report, we briefly summarize clinicopathological findings of the two cases, and characterize the biology of the mutation. When autophosphorylation of KIT-Dup-Ser501Ala502 was examined by transient transfection of c-kit cDNA with Dup-Ser501Ala502 into CHO-K1 cells, KIT-Dup-Ser501Ala502 was ligand-independently activating. The inhibitory effect of selective tyrosine kinase inhibitors, imatinib and nilotinib, on KIT-Dup-Ser501Ala502 was examined and compared with that of KIT-Dup-Ala502Tyr503. Imatinib efficiently inhibited constitutive activation of KIT-Dup-Ser501Ala502 at a concentration of 0.1 μM, whereas it inhibited that of KIT-Dup-Ala502Tyr503 at a concentration of 10 μM. Constitutive activation of KIT-Dup-Ser502Ala503 was not inhibited by nilotinib even at a concentration of 10 μM but that of KIT-Dup-Ala501Tyr502 was almost completely inhibited at a concentration of 1 μM. The results suggest that imatinib and nilotinib could be more effective on GISTs with KIT-Dup-Ser501Ala502 than those with KIT-Dup-Ala502Tyr503. In fact, a patient with KIT-Dup-Ser501Ala502 showed long-term stable disease with administration of the usual dose of 400 mg imatinib. Although mutation sites of KIT-Dup-Ser501Ala502 and KIT-Dup-Ala502Tyr503 are closely located, imatinib- and nilotinib-sensitive KIT-Dup-Ser501Ala502 are distinguishable from KIT-Dup-Ala502Tyr503.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Amino Acid Sequence
  • Animals
  • Antineoplastic Agents / pharmacology
  • Base Sequence
  • Benzamides / pharmacology*
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Drug Resistance, Neoplasm
  • Exons
  • Gastrointestinal Neoplasms / chemistry
  • Gastrointestinal Neoplasms / drug therapy*
  • Gastrointestinal Neoplasms / genetics*
  • Gastrointestinal Neoplasms / pathology
  • Gastrointestinal Stromal Tumors / chemistry
  • Gastrointestinal Stromal Tumors / drug therapy*
  • Gastrointestinal Stromal Tumors / genetics*
  • Gastrointestinal Stromal Tumors / pathology
  • Gene Duplication
  • Humans
  • Imatinib Mesylate
  • Immunohistochemistry
  • Male
  • Middle Aged
  • Molecular Sequence Data
  • Mutation*
  • Phosphorylation / drug effects
  • Piperazines / pharmacology*
  • Proto-Oncogene Proteins c-kit / genetics*
  • Pyrimidines / pharmacology*
  • Transfection

Substances

  • Antineoplastic Agents
  • Benzamides
  • Piperazines
  • Pyrimidines
  • Imatinib Mesylate
  • Proto-Oncogene Proteins c-kit
  • nilotinib