Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music

PLoS One. 2013;8(2):e56356. doi: 10.1371/journal.pone.0056356. Epub 2013 Feb 27.

Abstract

Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aptitude*
  • Base Pairing / genetics
  • Creativity*
  • DNA Copy Number Variations / genetics*
  • Databases, Genetic
  • Family
  • Female
  • Gene Duplication / genetics
  • Genome, Human / genetics*
  • Humans
  • Male
  • Middle Aged
  • Music*
  • Pedigree
  • Phenotype
  • Young Adult

Grants and funding

The work was financially supported by the Academy of Finland (grant 13371) and the Biocentrum Helsinki Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.