Influence of the colloidal structure of dairy gels on milk fat fusion behavior: quantification of the liquid fat content by in situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR)

J Food Sci. 2013 Apr;78(4):E535-41. doi: 10.1111/1750-3841.12072. Epub 2013 Mar 6.

Abstract

Dairy gels (DG), such as yoghurts, contain both solid and liquid fats at the time of consumption, as their temperature rises to anything between 10 and 24 °C after being introduced into the mouth at 4 °C. The mass ratio between solid and liquid fats, which depends on the temperature, impacts the organoleptic properties of DG. As the ordinary methods for determining this ratio can only be applied to samples consisting mainly in fat materials, a fat extraction step needs to be added into the analytical process when applied to DG, which prevents the study of the potential impact of their colloidal structure on milk fat fusion behavior. In situ quantitative proton nuclear magnetic resonance spectroscopy (isq (1) H NMR) was investigated as a method for direct measurements in DG: at temperatures between 20.0 and 70.0 °C, the liquid fat content and the composition of triacylglycerols of the liquid phase (in terms of alkyl chains length) were determined. Spectra of isolated milk fat also enable the quantification of the double bonds of triacylglycerols. Statistical tests showed no significant difference between isolated milk fat and milk fat inside a DG in terms of melting behavior: the fat globule membrane does not seem to have a significant influence on the fat melting behavior.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dietary Fats / analysis
  • Eggs / analysis
  • Fishes
  • Food Analysis / methods*
  • Freezing
  • Gels / analysis
  • Gels / chemistry*
  • Magnetic Resonance Spectroscopy / methods*
  • Meat / analysis
  • Milk / chemistry*
  • Temperature
  • Triglycerides / analysis

Substances

  • Dietary Fats
  • Gels
  • Triglycerides