Most direct-acting antivirals (DAAs) that are being developed as therapy against hepatitis C virus target the NS3/4A protease, the NS5A protein, and the NS5B polymerase. The latter enzyme offers different target sites: the catalytic domain for nucleos(t)ide analogues as well as a number of allosteric sites for nonnucleos(t)ide inhibitors. Two NS3/4A protease inhibitors have been approved recently, and more than 40 new NS3/4A, NS5A, or NS5B inhibitors are in development. These agents can achieve very high cure rates when combined with pegylated interferon-β and ribavirin and show promising clinical results when administered in all-oral combinations. In addition to the more canonical drug targets, new alternative viral targets for small-molecule drug development are emerging, such as p7 or NS4B and viral entry. Future research will need to define well-tolerated and cost-effective DAA combinations that provide the highest rates of viral eradication in all patients (including those with advanced liver disease), the broadest spectrum of action on viral genotypes showing minimal or no clinical resistance, and the shortest treatment duration.
Copyright © 2013 American Association for the Study of Liver Diseases.