Diseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represent expanding threats to cotton production. Integrating disease resistance into high-yielding, high-fiber quality cotton (Gossypium spp.) cultivars is one of the most important objectives in cotton breeding programs worldwide. In this study, we conducted a comprehensive analysis of gene action in cotton governing FOV race 4 resistance by combining conventional inheritance and quantitative trait loci (QTL) mapping with molecular markers. A set of diverse cotton populations was generated from crosses encompassing multiple genetic backgrounds. FOV race 4 resistance was investigated using seven parents and their derived populations: three intraspecific (G. hirsutum × G. hirsutum L. and G. barbadense × G. barbadense L.) F1 and F2; five interspecific (G. hirsutum × G. barbadense) F1 and F2; and one RIL. Parents and populations were evaluated for disease severity index (DSI) of leaves, and vascular stem and root staining (VRS) in four greenhouse and two field experiments. Initially, a single resistance gene (Fov4) model was observed in F2 populations based on inheritance of phenotypes. This single Fov4 gene had a major dominant gene action and conferred resistance to FOV race 4 in Pima-S6. The Fov4 gene appears to be located near a genome region on chromosome 14 marked with a QTL Fov4-C14 1 , which made the biggest contribution to the FOV race 4 resistance of the generated F2 progeny. Additional genetic and QTL analyses also identified a set of 11 SSR markers that indicated the involvement of more than one gene and gene interactions across six linkage groups/chromosomes (3, 6, 8, 14, 17, and 25) in the inheritance of FOV race 4 resistance. QTLs detected with minor effects in these populations explained 5-19 % of the DSI or VRS variation. Identified SSR markers for the resistance QTLs with major and minor effects will facilitate for the first time marker-assisted selection for the introgression of FOV race 4 resistance into elite cultivars during the breeding process.