Self-construal priming modulates human behavior and associated neural activity. However, the neural activity associated with the self-construal priming procedure itself remains unknown. It is also unclear whether and how self-construal priming affects neural activity prior to engaging in a particular task. To address this gap, we scanned Chinese adults, using functional magnetic resonance imaging, during self-construal priming and a following resting state. We found that, relative to a calculation task, both interdependent and independent self-construal priming activated the ventral medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC). The contrast of interdependent vs. independent self-construal priming also revealed increased activity in the dorsal MPFC and left middle frontal cortex. The regional homogeneity analysis of the resting-state activity revealed increased local synchronization of spontaneous activity in the dorsal MPFC but decreased local synchronization of spontaneous activity in the PCC when contrasting interdependent vs. independent self-construal priming. The functional connectivity analysis of the resting-state activity, however, did not show significant difference in synchronization of activities in remote brain regions between different priming conditions. Our findings suggest that accessible collectivistic/individualistic mind-set induced by self-construal priming is associated with modulations of both task-related and resting-state activity in the default mode network.