The HSP90 inhibitor NVP-AUY922 potently inhibits non-small cell lung cancer growth

Mol Cancer Ther. 2013 Jun;12(6):890-900. doi: 10.1158/1535-7163.MCT-12-0998. Epub 2013 Mar 14.

Abstract

Heat shock protein 90 (HSP90) is involved in protein folding and functions as a chaperone for numerous client proteins, many of which are important in non-small cell lung cancer (NSCLC) pathogenesis. We sought to define preclinical effects of the HSP90 inhibitor NVP-AUY922 and identify predictors of response. We assessed in vitro effects of NVP-AUY922 on proliferation and protein expression in NSCLC cell lines. We evaluated gene expression changes induced by NVP-AUY922 exposure. Xenograft models were evaluated for tumor control and biological effects. NVP-AUY922 potently inhibited in vitro growth in all 41 NSCLC cell lines evaluated with IC50 < 100 nmol/L. IC100 (complete inhibition of proliferation) < 40 nmol/L was seen in 36 of 41 lines. Consistent gene expression changes after NVP-AUY922 exposure involved a wide range of cellular functions, including consistently decreased dihydrofolate reductase after exposure. NVP-AUY922 slowed growth of A549 (KRAS-mutant) xenografts and achieved tumor stability and decreased EGF receptor (EGFR) protein expression in H1975 xenografts, a model harboring a sensitizing and a resistance mutation for EGFR-tyrosine kinase inhibitors in the EGFR gene. These data will help inform the evaluation of correlative data from a recently completed phase II NSCLC trial and a planned phase IB trial of NVP-AUY922 in combination with pemetrexed in NSCLCs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Clinical Trials as Topic
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Gene Expression Regulation, Neoplastic / drug effects*
  • HSP90 Heat-Shock Proteins / antagonists & inhibitors*
  • HSP90 Heat-Shock Proteins / genetics
  • HSP90 Heat-Shock Proteins / metabolism
  • Humans
  • Isoxazoles / administration & dosage*
  • Molecular Chaperones / administration & dosage
  • Resorcinols / administration & dosage*
  • Xenograft Model Antitumor Assays

Substances

  • 5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-morpholin-4-ylmethylphenyl)isoxazole-3-carboxylic acid ethylamide
  • HSP90 Heat-Shock Proteins
  • Isoxazoles
  • Molecular Chaperones
  • Resorcinols
  • ErbB Receptors