Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies

Lancet Oncol. 2013 Apr;14(4):327-34. doi: 10.1016/S1470-2045(13)70045-7. Epub 2013 Mar 13.

Abstract

Background: Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations.

Methods: Of 1068 unilateral non-familial retinoblastoma tumours, we compared those with no evidence of RB1 mutations (RB1(+/+)) with tumours carrying a mutation in both alleles (RB1(-/-)). We analysed genomic copy number, RB1 gene expression and protein function, retinal gene expression, histological features, and clinical data.

Findings: No RB1 mutations (RB1(+/+)) were reported in 29 (2·7%) of 1068 unilateral retinoblastoma tumours. 15 of the 29 RB1(+/+) tumours had high-level MYCN oncogene amplification (28-121 copies; RB1(+/+)MYCN(A)), whereas none of 93 RB1(-/-) primary tumours tested showed MYCN amplification (p<0·0001). RB1(+/+)MYCN(A) tumours expressed functional RB1 protein, had fewer overall genomic copy-number changes in genes characteristic of retinoblastoma than did RB1(-/-) tumours, and showed distinct aggressive histological features. MYCN amplification was the sole copy-number change in one RB1(+/+)MYCN(A) retinoblastoma. One additional MYCN(A) tumour was discovered after the initial frequencies were determined, and this is included in further analyses. Median age at diagnosis of the 17 children with RB1(+/+)MYCN(A) tumours was 4·5 months (IQR 3·5-10), compared with 24 months (15-37) for 79 children with non-familial unilateral RB1(-/-) retinoblastoma.

Interpretation: Amplification of the MYCN oncogene might initiate retinoblastoma in the presence of non-mutated RB1 genes. These unilateral RB1(+/+)MYCN(A) retinoblastomas are characterised by distinct histological features, only a few of the genomic copy-number changes that are characteristic of retinoblastoma, and very early age of diagnosis.

Funding: National Cancer Institute-National Institutes of Health, Canadian Institutes of Health Research, German Research Foundation, Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, Ontario Ministry of Health and Long Term Care, UK-Essen, and Foundations Avanti-STR and KiKa.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cell Line, Tumor
  • Child
  • Child, Preschool
  • Female
  • Gene Amplification
  • Gene Dosage*
  • Gene Expression Regulation, Neoplastic
  • Genome, Human
  • Humans
  • Infant
  • Mutation
  • N-Myc Proto-Oncogene Protein
  • Nuclear Proteins* / genetics
  • Nuclear Proteins* / metabolism
  • Oncogene Proteins* / genetics
  • Oncogene Proteins* / metabolism
  • Polymorphism, Single Nucleotide
  • Retinoblastoma Protein* / genetics
  • Retinoblastoma Protein* / metabolism
  • Retinoblastoma* / genetics
  • Retinoblastoma* / metabolism
  • Retinoblastoma* / pathology

Substances

  • MYCN protein, human
  • N-Myc Proto-Oncogene Protein
  • Nuclear Proteins
  • Oncogene Proteins
  • Retinoblastoma Protein