Stimulated Raman scattering (SRS) microscopy has opened up a wide range of biochemical imaging applications by probing a particular Raman-active molecule vibrational mode in the specimen. However, the original implementation with picosecond pulse excitation can only realize rapid chemical mapping with a single Raman band. Here we present a novel SRS microscopic technique using a grating-based pulse shaper for excitation and a grating-based spectrograph for detection to achieve simultaneous multicolor SRS imaging with high sensitivity and high acquisition speeds. In particular, we used linear combination of the measured CH2 and CH3 stretching signals to map the distributions of protein and lipid contents simultaneously.
Keywords: coherent Raman scattering; grating; lipid; lock-in; mouse skin; multicolor; poly(methyl methacrylate); polystyrene; protein; pulse shaper; stimulated Raman scattering.