Objectives: To examine the effect of subinhibitory concentrations (sub-MICs) of antistaphylococcal drugs on Panton-Valentine leucocidin (PVL), α-haemolysin (Hla) and protein A (SpA) expression by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA).
Methods: Five clinical isolates representing the main worldwide CA-MRSA clones were grown with sub-MICs (1/8, 1/4 and 1/2 MIC) of five antibiotics (clindamycin, daptomycin, linezolid, tigecycline and vancomycin). After 4 and 6 h of incubation, culture pellets were used for relative quantitative RT-PCR with primers specific for pvl, hla, spa and gyrB. The PVL, Hla and SpA concentrations were measured in the supernatant (for PVL and Hla) and in the cell pellet (for SpA) using specific ELISAs.
Results: For all strains tested, clindamycin and linezolid dramatically reduced mRNA levels of PVL and SpA. Tigecycline also decreased the PVL and SpA mRNA levels of 3/5 and 4/5 strains tested, respectively, whereas daptomycin and vancomycin had no significant effect. PVL and SpA quantification confirmed the concentration-dependent inhibition of PVL and SpA production by clindamycin and, to a lesser extent, by linezolid and tigecycline. Only clindamycin decreased Hla mRNA expression, whereas linezolid, tigecycline and daptomycin showed heterogeneous strain-dependent results, and vancomycin had no significant effect. Analysis of the Hla level revealed a stronger concentration-dependent inhibition of Hla release by clindamycin than by linezolid.
Conclusions: The effect of sub-MICs on virulence expression depended on the antibiotic and the virulence factor. Clindamycin and linezolid consistently suppressed the expression of different virulence factors by CA-MRSA, whereas tigecycline specifically suppressed PVL expression. Daptomycin and vancomycin seem to have no significant effects at these concentrations.
Keywords: PVL; leucocidin; protein A; α-haemolysin.