CSF and Serum Biomarkers Focusing on Cerebral Vasospasm and Ischemia after Subarachnoid Hemorrhage

Stroke Res Treat. 2013:2013:560305. doi: 10.1155/2013/560305. Epub 2013 Feb 19.

Abstract

Delayed cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) remain severe complications after subarachnoid hemorrhage (SAH). Although focal changes in cerebral metabolism indicating ischemia are detectable by microdialysis, routinely used biomarkers are missing. We therefore sought to evaluate a panel of possible global markers in serum and cerebrospinal fluid (CSF) of patients after SAH. CSF and serum of SAH patients were analyzed retrospectively. In CSF, levels of inhibitory, excitatory, and structural amino acids were detected by high-performance liquid chromatography (HPLC). In serum, neuron-specific enolase (NSE) and S100B level were measured and examined in conjunction with CVS and DCI. CVS was detected by arteriography, and ischemic lesions were assessed by computed tomography (CT) scans. All CSF amino acids were altered after SAH. CSF glutamate, glutamine, glycine, and histidine were significantly correlated with arteriographic CVS. CSF glutamate and serum S100B were significantly correlated with ischemic events after SAH; however, NSE did not correlate neither with ischemia nor with vasospasm. Glutamate, glutamine, glycine, and histidine might be used in CSF as markers for CVS. Glutamate also indicates ischemia. Serum S100B, but not NSE, is a suitable marker for ischemia. These results need to be validated in larger prospective cohorts.