Computational enzyme design

Angew Chem Int Ed Engl. 2013 May 27;52(22):5700-25. doi: 10.1002/anie.201204077. Epub 2013 Mar 25.

Abstract

Recent developments in computational chemistry and biology have come together in the "inside-out" approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational "inside-out" design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd-sourced structure-prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Antibodies, Catalytic / chemistry
  • Computational Biology
  • Enzymes / chemistry*
  • Models, Molecular*
  • Protein Engineering / methods*

Substances

  • Antibodies, Catalytic
  • Enzymes