Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana

PLoS One. 2013;8(3):e59235. doi: 10.1371/journal.pone.0059235. Epub 2013 Mar 18.

Abstract

Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05) smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and develop precautionary policies regarding proposed feeding sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Conservation of Natural Resources / methods
  • Demography*
  • Ecosystem*
  • Feeding Methods / veterinary*
  • Female
  • Motor Activity / physiology
  • Skates, Fish / physiology*
  • Spatial Behavior / physiology*
  • Telemetry
  • Travel
  • West Indies

Grants and funding

This research was supported by the Guy Harvey Research Institute, the Guy Harvey Ocean Foundation, PADI Project Aware and Nova Southeastern University Oceanographic Center. Additional equipment was provided by Honda Marine and Digital Angel Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.