Immunoglobulin E (IgE) is the least abundant immunoglobulin in serum. However, development of an IgE immune response can induce IgE receptor-expressing cells to carry out potent effector functions. A reliable antigen-specific IgE biomarker method for use in non-human primate studies would facilitate (i) confirmation of Type-I hypersensitivity reactions during safety toxicology testing, and (ii) a better understanding of non-human primate models of allergic disease. We cloned and expressed a recombinant cynomolgus monkey IgE molecule in order to screen a panel of commercially available detection reagents raised against human IgE for cross-reactivity. The reagent most reactive to cynomolgus IgE was confirmed to be specific for IgE and did not bind recombinant cynomolgus monkey IgG1-4. A drug-specific IgE assay was developed on the MSD electrochemiluminescent (ECL) platform. The assay is capable of detecting 10 ng/mL drug-specific IgE. Importantly, the assay is able to detect IgE in the presence of excess IgG, the scenario likely to be present in a safety toxicology study. Using our ECL assay, we were able to confirm that serum from cynomolgus monkeys that had experienced clinical symptoms consistent with hypersensitivity responses contained IgE specific for a candidate therapeutic antibody. In addition, a bioassay for mast cell activation was developed using CD34(+)-derived cynomolgus monkey mast cells. This assay confirmed that plasma from animals identified as positive in the drug-specific IgE immunoassay contained biologically active IgE (i.e. could sensitize cultured mast cells), resulting in histamine release after exposure to the therapeutic antibody. These sensitive assays for Type-I hypersensitivity in the NHP can confirm that secondary events are downstream of immunogenicity.
Copyright © 2013 Elsevier B.V. All rights reserved.