Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition

Oncogenesis. 2012 Jul 16;1(7):e20. doi: 10.1038/oncsis.2012.20.

Abstract

The discovery of translocations that involve one of the genes of the ETS family (ERG, ETV1, ETV4 and ETV5) has been a major advance in understanding the molecular basis of prostate cancer (PC). Each one of these translocations results in deregulated expression of one of the ETS proteins. Here, we focus on the mechanism whereby overexpression of the ETV4 gene mediates oncogenesis in the prostate. By siRNA technology, we show that ETV4 inhibition in the PC3 cancer cell line reduces not only cell mobility and anchorage-independent growth, but also cell proliferation, cell cycle progression and tumor growth in a xenograft model. Conversely, ETV4 overexpression in the nonmalignant human prostate cell line (RWPE) increases anchorage-independent growth, cell mobility and cell proliferation, which is probably mediated by downregulation of p21, producing accelerated progression through the cell cycle. ETV4 overexpression is associated with changes in the pattern of E-cadherin and N-cadherin expression; the cells also become spindle-shaped, and these changes are characteristic of the so-called epithelial to mesenchymal transition (EMT). In RWPE cells overexpressing ETV4 EMT results from a marked increase in EMT-specific transcription factors such as TWIST1, SLUG1, ZEB1 and ZEB2. Thus, whereas ETV4 shares with the other ETS proteins (ERG, ETV5 and ETV1) a major role in invasiveness and cell migration, it emerges as unique in that it increases at the same time also the rate of proliferation of PC cells. Considering the wide spectrum in the clinical course of patients with PC, it may be highly relevant that ETV4 is capable of inducing most and perhaps all of the features that make a tumor aggressive.