Purpose: G protein-coupled estrogen receptor 1 (GPER1), previously named GPR30, is a membrane receptor reported to mediate nongenomic estrogen responses. We investigated if GPER1 expression correlates with any clinicopathologic variables and distant disease-free survival (DDFS) in patients with breast cancer, if any prognostic impact of the receptor is dependent on estrogen receptor-α (ER-α) status, and if the receptor impacts apoptotic signaling in ER-positive breast cancer cells.
Experimental design: GPER1 expression was analyzed by immunohistochemistry in breast tumors from 273 pre- and postmenopausal stage II patients, all treated with adjuvant tamoxifen for 2 years (cohort I) and from 208 premenopausal lymph node-negative patients, of which 87% were not subjected to any adjuvant systemic treatment (cohort II). GPER1-dependent proapoptotic signaling was analyzed in MCF7 cells with and without GPER1 knockdown, T47D cells, HEK293 cells (HEK), and HEK stably expressing GPER1 (HEK-R).
Results: GPER1 positively correlates with ER and progesterone receptor expression. Multivariate analysis showed that GPER1 is an independent prognostic marker of increased 10-year DDFS in the ER-positive subgroup. HEK-R has higher basal proapoptotic signaling compared with HEK including increased cytochrome C release, caspase-3 cleavage, PARP cleavage, and decreased cell viability. Treating HEK-R with the proteasome inhibitor epoxomicin, to decrease GPER1 degradation, further increases receptor-dependent proapoptotic signaling. Also, GPER1 knockdown decreases basal and agonist-stimulated proapoptotic receptor signaling in MCF7 cells.
Conclusions: GPER1 is a prognostic indicator for increased DDFS in ER-positive breast cancer, which may be associated with constitutive GPER1-dependent proapoptotic signaling in ER-positive breast cancer cells.
©2013 AACR.