LINE-1 (L1) retrotransposons make up a significant portion of human genomes, with an estimated 500,000 copies per genome. Like other retrotransposons, L1 retrotransposons propagate through RNA sequences that are reverse transcribed into DNA sequences, which are integrated into new genomic loci. L1 somatic insertions have the potential to disrupt the transcriptome by inserting into or nearby genes. By mutating genes and playing a role in epigenetic dysregulation, L1 transposons may contribute to tumorigenesis. Studies of the "mobilome" have lagged behind other tumor characterizations at the sequence, transcript, and epigenetic levels. Here, we consider evidence that L1 retrotransposons may sometimes drive human tumorigenesis.