Modeling respiratory motion for reducing motion artifacts in 4D CT images

Med Phys. 2013 Apr;40(4):041716. doi: 10.1118/1.4795133.

Abstract

Purpose: Four-dimensional computed tomography (4D CT) images have been recently adopted in radiation treatment planning for thoracic and abdominal cancers to explicitly define respiratory motion and anatomy deformation. However, significant image distortions (artifacts) exist in 4D CT images that may affect accurate tumor delineation and the shape representation of normal anatomy. In this study, the authors present a patient-specific respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition.

Methods: For a 4D CT image set of a specific patient, the authors calculated displacement vector fields relative to a reference phase, using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. The authors have demonstrated that the regular respiratory motion of a patient can be accurately represented by a subspace spanned by three principal motion bases and their projections. These projections were parameterized using a spline model to allow the reconstruction of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts.

Results: The authors evaluated the performance of the in-house deformable image registration method using benchmark datasets consisting of ten 4D CT sets annotated with 300 landmark pairs that were approved by physicians. The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The proposed motion model was quantitatively validated on 4D CT images of a phantom and a lung cancer patient by comparing the synthesized images and the original images at different phases. The synthesized images matched well with the original images. The motion model was used to reduce irregular motion artifacts in the 4D CT images of three lung cancer patients. Visual assessment indicated that the proposed approach could reduce severe image artifacts. The shape distortions around the diaphragm and tumor regions were mitigated in the synthesized 4D CT images.

Conclusions: The authors have derived a mathematical model to represent the regular respiratory motion from a patient-specific 4D CT set and have demonstrated its application in reducing irregular motion artifacts in 4D CT images. The authors' approach can mitigate shape distortions of anatomy caused by irregular breathing motion during 4D CT acquisition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artifacts*
  • Computer Simulation
  • Four-Dimensional Computed Tomography / methods*
  • Humans
  • Models, Biological*
  • Movement
  • Radiographic Image Enhancement / methods*
  • Radiotherapy, Image-Guided / methods*
  • Reproducibility of Results
  • Respiratory Mechanics*
  • Respiratory-Gated Imaging Techniques / methods*
  • Sensitivity and Specificity