Long-term correction of type 1 and 2 diabetes by central leptin gene therapy independent of effects on appetite and energy expenditure

Indian J Endocrinol Metab. 2012 Dec;16(Suppl 3):S556-61. doi: 10.4103/2230-8210.105572.

Abstract

Adipocyte-derived leptin is a hormone associated with the regulation of energy homeostasis, including glucose metabolism. Hyperleptinemia, induced by the consumption of energy-enriched diets, inhibits leptin transport across the blood-brain barrier, and thereby produces leptin insufficiency in the hypothalamus. As a result of sustained leptin insufficiency, the hypothalamic restraint on pancreatic insulin secretion is lost. Additionally, both glucose metabolism and energy expenditure are also diminished, and both type 1 and type 2 diabetes are induced. A replication-deficient recombinant adeno-associated virus vector engineered to encode the leptin gene (rAVV-LEP) has been used in models of diabetes as a novel therapeutic approach. After rAVV-LEP injection in ob/ob mice, hypothalamic leptin expression was increased, body weight was suppressed, and hyperinsulinemia was ameliorated. Additionally injection of rAVV-LEP into the hypothalamus suppressed the expression of orexigenic neuropeptide Y (NPY) and enhanced anorexigenic pro-opiomelanocortin (POMC) in the arcuate nucleus (ARC) in rats. It is proposed that central leptin gene therapy should be tested clinically to reduce the worldwide epidemic of obesity, diabetes, and shortened life span. In this article, the information has been assembled from published review articles on this topic.

Keywords: Central leptin gene therapy; leptin insufficiency in the hypothalamus; type 1 and 2 diabetes.