Here we characterized the genome-wide architecture of copy number variations (CNVs) in 286 healthy, unrelated Finnish individuals belonging to the MUSGEN study, where molecular background underlying musical aptitude and related traits are studied. By using Illumina HumanOmniExpress-12v.1.0 beadchip, we identified 5493 CNVs that were spread across 467 different cytogenetic regions, spanning a total size of 287.83 Mb (∼9.6% of the human genome). Merging the overlapping CNVs across samples resulted in 999 discrete copy number variable regions (CNVRs), of which ∼6.9% were putatively novel. The average number of CNVs per person was 20, whereas the average size of CNV per locus was 52.39 kb. Large CNVs (>1 Mb) were present in 4% of the samples. The proportion of homozygous deletions in this data set (∼12.4%) seemed to be higher when compared with three other populations. Interestingly, several CNVRs were significantly enriched in this sample set, whereas several others were totally depleted. For example, a CNVR at chr2p22.1 intersecting GALM was more common in this population (P=3.3706 × 10(-44)) than in African and other European populations. The enriched CNVRs, however, showed no significant association with music-related phenotypes. Moreover, the most common CNV locations in world's normal population cohorts (6q14.1, 11q11) were overrepresented in this population. Thus, the genome-wide CNV investigation in this Finnish sample set demonstrated features that are characteristic to isolated populations. Novel CNVRs and the functional implications of CNVs revealed in this study elucidate structural variation present in this population isolate, and may also serve as candidate gene loci for music-related traits.