Although docetaxel (DTX) is an advanced taxoid, further augmentation of its properties is still required, such as improvement in its low aqueous solubility. Herein, we report the development of biodegradable/injectable poly(organophosphazene) (PPZ) hydrogels for the delivery of DTX without the use of organic solvents. An aqueous solution of PPZ containing α-amino-ω-methoxy-poly(ethylene glycol) (AMPEG) 750 instead of AMPEG 550 was prepared, thereby increasing the erosion capacity of the hydrogel by judicious balance of the hydrophobic/hydrophilic moieties. The safety of the hydrogel was demonstrated using a biocompatibility test. The PPZ aqueous solution (8 wt%) containing DTX exhibited a thermosensitive sol-gel-sol transition that was independent of the concentration of DTX (1-3 mg/mL). The in vitro release study indicated that the dominant release mechanism was either erosion or diffusion/erosion-controlled release depending on the DTX content of the hydrogel. The in vivo anticancer effect of the intratumorally injected PPZ system in human gastric cancer cell-xenografted mice was evaluated, which demonstrated a significantly (p < 0.01) enhanced effect of the DTX-PPZ hydrogel system compared to the control (DTX solution, i.v.). In conclusion, the PPZ hydrogel may be a promising candidate for DTX delivery, affecting a decrease in the size of tumors with little toxicity prior to exeresis.