The conservation of unique populations of animals is critical in order to preserve valuable genetic diversity and, where populations are free-living, maintain their irreplaceable influence upon habitat ecology. An accurate assessment of genetic diversity and structure within and between populations is crucial in order to design and implement conservation strategies in natural and domesticated species. Moreover, where it is possible to identify relic populations that are related to a structured breed an ideal opportunity presents itself to model processes that reveal historical factors that have shaped genetic diversity. The origins of native UK mountain and moorland ponies are uncertain, but they may have directly descended from prehistoric populations and potentially harbour specific adaptations to the uplands of Britain and Ireland. To date, there have been no studies of population structure and genetic diversity present within a free-living group of ponies in the Carneddau mountain range of North Wales. Herein, we describe the use of microsatellites and SNPs together with analysis of the mitochondrial control region to quantify the extent and magnitude of genetic diversity present in the feral Carneddau pony and relate this to several recognised British and Irish pony breeds. Our results establish that the feral Carneddau ponies represent a unique and distinctive population that merits recognition as a defined population and conservation priority. We discuss the implications for conservation of this population as a unique pool of genetic diversity adapted to the British uplands and potentially of particular value in maintaining the biodiversity of these habitats.
Keywords: Conservation; SNP; Welsh pony; microsatellite; mtDNA; phylogenetics.