Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4(+) T cells specific for the circumsporozoite protein (CSP). Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4(+) T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4(+) T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI) 24%-41%) of infections. The addition of RTS,S-induced CSP-specific CD4(+) T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%-48%). This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%-97.8%) reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite) are responsible for breakthrough blood-stage infections.