The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 kDa and HES 450 kDa) and dextran (DEX 500 kDa). Particle size and molecular weight distribution were determined by asymmetric flow field-flow fractionation (AF4). The biodistribution was investigated non-invasively in nude mice using multispectral optical imaging. The most promising polymer conjugate was characterized in human colon carcinoma xenograft bearing nude mice. A tumor specific accumulation of HES 450 was observed, which proves it's potential as carrier for passive tumor targeting.
Copyright © 2013 Elsevier Ltd. All rights reserved.