Wiener filtering improves quantification of regional myocardial perfusion with thallium-201 SPECT

J Nucl Med. 1990 Jul;31(7):1230-6.

Abstract

Quantitation of myocardial perfusion with thallium-201 (201Tl) SPECT is limited by finite resolution and image noise. This study examined whether Wiener filtering could improve quantitation of the severity of myocardial perfusion deficits. In 19 anesthetized dogs, adjustable stenoses were placed on the left anterior descending (LAD, n = 12) or circumflex (LCx, n = 7) arteries. Thallium-201 SPECT images were acquired during maximal coronary vasodilation with dipyridamole, and simultaneous measurements of myocardial blood flow were made with microspheres. The relationship between SPECT and microsphere flow deficits in the LAD region was significantly better (p less than 0.05) with Wiener filtering (Y = 0.90X + 0.03, r = 0.78) than with conventional Hanning filtering (Y = 0.66X + 0.34, r = 0.61). Similarly, in the LCx region the relationship between SPECT and microsphere perfusion deficits was better (p less than 0.01) with the Wiener filter (Y = 0.91X + 0.07, r = 0.66) than with the Hanning filter (Y = 0.36X + 0.50, r = 0.40). Wiener filtering improves quantitation of the severity of regional myocardial perfusion deficits, allowing better assessment of the functional significance of coronary artery stenoses.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Coronary Circulation*
  • Dogs
  • Heart / diagnostic imaging*
  • Image Enhancement*
  • Regional Blood Flow
  • Thallium Radioisotopes
  • Tomography, Emission-Computed, Single-Photon / methods*
  • Tomography, Emission-Computed, Single-Photon / standards

Substances

  • Thallium Radioisotopes