Bioinformatics-based selection of a model cell type for in vitro biomaterial testing

Biomaterials. 2013 Jul;34(22):5552-61. doi: 10.1016/j.biomaterials.2013.04.001. Epub 2013 Apr 28.

Abstract

Biomaterial properties can be tailored for specific applications via systematic and high-throughput screening of biomaterial-cell interactions. However, progress in material development is often hampered by the lack of adequate in vitro testing methods, frequently due to incomplete understanding of involved in vivo mechanisms. In line with drug discovery in pharmacology, a crucial step in assay development for biomaterial screening is the identification of a target to direct the screen against. Herein, the cell type to be used for screening is of essential importance and has to be carefully chosen. So far, few attention has been put on selecting a cell type specifically suitable for in vitro testing of materials for predefined applications. In this manuscript, we describe an approach to define a suitable cell type for screening assays, for which biomaterials for bone regeneration served as example. Using a bioinformatics methodology, different cell lines are compared on three well-characterized model materials. The transcriptional profiles of MG63, iMSC, SV-HFO, hPPCT, hBPCT and SW480 cells are assessed on 3 calcium phosphate-based materials to evaluate their potential application in a screening assay. We show that MG63 is the most suitable cell line to evaluate biomaterials for bone regeneration applications, evidenced by their robust gene expression differences between the 3 model materials. The gene expression differences between the cell lines were assessed based on the overall gene expression profiles and specific subsets of genes and pathways related to osteogenesis and bone homeostasis in response to the 3 materials tested. In the next phase, this cell line will be used to identify a target correlating with in vivo biomaterial performance and henceforth to develop an in vitro screening system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials / pharmacology*
  • Calcium Phosphates / pharmacology
  • Cell Line
  • Cell Survival / drug effects
  • Cell Survival / genetics
  • Computational Biology*
  • Durapatite / pharmacology
  • Gene Expression Profiling
  • Gene Expression Regulation / drug effects
  • Humans
  • Materials Testing / methods*
  • Microscopy, Electron, Scanning
  • Models, Biological*
  • Osseointegration / drug effects
  • Osseointegration / genetics
  • Osteogenesis / drug effects
  • Osteogenesis / genetics

Substances

  • Biocompatible Materials
  • Calcium Phosphates
  • Durapatite
  • calcium phosphate
  • tricalcium phosphate