Chapter 15: disease gene prioritization

PLoS Comput Biol. 2013 Apr;9(4):e1002902. doi: 10.1371/journal.pcbi.1002902. Epub 2013 Apr 25.

Abstract

Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Computational Biology / methods*
  • Computer Simulation
  • Exons
  • Genetic Predisposition to Disease*
  • Genetics
  • Humans
  • Models, Theoretical
  • Mutation
  • Phenotype
  • Protein Interaction Mapping
  • Software

Grants and funding

YB is funded by Rutgers, New Brunswick start-up funding, Gordon and Betty Moore Foundation grant, and USDA-NIFA and NJAES grants Project No. 10150-0228906. The funders had no role in the preparation of the manuscript.