The purpose of the present study was to design and evaluate a monolithic drug-in-adhesive patch with a novel pressure-sensitive adhesive (PSA) matrix based on styrene-isoprene-styrene (SIS) block copolymer. Testosterone was selected as the model drug. The orthogonal array design for ternary mixtures was employed to optimize the amounts of SIS, C-5 hydrocarbon resin, and liquid paraffin. The drug release percentage, water vapor permeability, adhesive properties were chosen as response variables. The patch formulation was optimized by investigating the effects of the drug loading capacity, the type, and amount of permeation enhancer on the adhesive properties and skin permeation. The compositions of the optimal matrix were: 120 g of SIS copolymer, 120 g of C-5 hydrocarbon resin, 60 g of liquid paraffin. An optimized formulation with maximum skin permeation and acceptable adhesive properties was developed incorporating 2% testosterone and 6% isopropyl myristate. No significant differences for in vitro release, skin permeation, and in vivo absorption were observed between the optimal formulation and Testopatch®. The stability evaluation showed that the patches were stable at 25°C/60% relative humidity for 6 months. The result indicated that SIS copolymer was a suitable and compatible polymer for the development of PSA.
Copyright © 2013 Wiley Periodicals, Inc.