Low temperature is an environmental factor that affects plant growth and development and plant-pathogen interactions. How temperature regulates plant defense responses is not well understood. In this study, we characterized chilling-sensitive mutant 1 (chs1), and functionally analyzed the role of the CHS1 gene in plant responses to chilling stress. The chs1 mutant displayed a chilling-sensitive phenotype, and also displayed defense-associated phenotypes, including extensive cell death, the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR genes: these phenotypes indicated that the mutation in chs1 activates the defense responses under chilling stress. A map-based cloning analysis revealed that CHS1 encodes a TIR-NB-type protein. The chilling sensitivity of chs1 was fully rescued by pad4 and eds1, but not by ndr1. The overexpression of the TIR and NB domains can suppress the chs1-conferred phenotypes. Interestingly, the stability of the CHS1 protein was positively regulated by low temperatures independently of the 26S proteasome pathway. This study revealed the role of a TIR-NB-type gene in plant growth and cell death under chilling stress, and suggests that temperature modulates the stability of the TIR-NB protein in Arabidopsis.
Keywords: Arabidopsis; CHS1; TIR-NB-type protein; chilling stress; defense responses.
© 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.