The distributed nature of nervous systems makes it necessary to record from a large number of sites in order to decipher the neural code, whether single cell, local field potential (LFP), micro-electrocorticograms (μECoG), electroencephalographic (EEG), magnetoencephalographic (MEG) or in vitro micro-electrode array (MEA) data are considered. High channel-count recordings also optimize the yield of a preparation and the efficiency of time invested by the researcher. Currently, data acquisition (DAQ) systems with high channel counts (>100) can be purchased from a limited number of companies at considerable prices. These systems are typically closed-source and thus prohibit custom extensions or improvements by end users. We have developed MANTA, an open-source MATLAB-based DAQ system, as an alternative to existing options. MANTA combines high channel counts (up to 1440 channels/PC), usage of analog or digital headstages, low per channel cost (<$90/channel), feature-rich display and filtering, a user-friendly interface, and a modular design permitting easy addition of new features. MANTA is licensed under the GPL and free of charge. The system has been tested by daily use in multiple setups for >1 year, recording reliably from 128 channels. It offers a growing list of features, including integrated spike sorting, PSTH and CSD display and fully customizable electrode array geometry (including 3D arrays), some of which are not available in commercial systems. MANTA runs on a typical PC and communicates via TCP/IP and can thus be easily integrated with existing stimulus generation/control systems in a lab at a fraction of the cost of commercial systems. With modern neuroscience developing rapidly, MANTA provides a flexible platform that can be rapidly adapted to the needs of new analyses and questions. Being open-source, the development of MANTA can outpace commercial solutions in functionality, while maintaining a low price-point.
Keywords: LFP; data acquisition; electrode arrays; neural recordings; μECoG.