The use of sulfide to form iron sulfide precipitates is an attractive option for separation and recovery of phosphorus and ferric iron from ferric phosphate sludge generated in wastewater treatment. The key factors affecting the simultaneous generation and separation of iron sulfide precipitates and phosphate solution from ferric phosphate sludge have so far not been thoroughly investigated. This study therefore focuses on the recovery of phosphorus from synthetic sludge by controlled sulfide addition under different operating conditions. The factors that affect the phosphorus recovery, as well as the optimal process conditions to achieve an effective solid-liquid separation, were investigated. The separation of the FeSx particles is a significant challenge due to the colloidal nature of the particles formed. Faster separation and higher phosphorus recovery was achieved when operating at pH 4 with dosing times of at least 1h. At this pH, phosphorus recovery of 70±6% was reached at the stoichiometric S/Fe molar ratio of 1.5, increasing to over 90% recovery at a S/Fe molar ratio of 2.5. Zeta potential results confirmed the colloidal nature of the iron sulfide precipitate, with the isoelectric point around pH 4, explaining the fast separation of the FeSx particles at this pH.
Copyright © 2013 Elsevier Inc. All rights reserved.