Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces

J Lipid Res. 2013 Jul;54(7):1927-38. doi: 10.1194/jlr.M037531. Epub 2013 May 13.

Abstract

Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.

Keywords: drop tensiometry; protein-lipid interaction; surface chemistry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apolipoprotein C-I / chemistry*
  • Apolipoprotein C-I / genetics
  • Humans
  • Phosphatidylcholines / chemistry*
  • Point Mutation
  • Protein Structure, Secondary
  • Surface Properties
  • Triolein / chemistry*
  • Water / chemistry*

Substances

  • APOC1 protein, human
  • Apolipoprotein C-I
  • Phosphatidylcholines
  • Water
  • Triolein
  • 1-palmitoyl-2-oleoylphosphatidylcholine