Analytical study of superaromaticity in cycloarenes and related coronoid hydrocarbons

J Phys Chem A. 2013 Jun 6;117(22):4688-97. doi: 10.1021/jp4016678. Epub 2013 May 28.

Abstract

Recently synthesized septulene is a unique cycloarene molecule in that no macrocyclic conjugation circuits can be chosen from the π-system. This molecule has essentially no superaromatic stabilization energy (SSE) and can be viewed as an ideal nonsuperaromatic macrocycle. SSEs for kekulene and other cycloarenes are also very small. In these hydrocarbons, a macrocycle formed by fused benzene rings effectively suppresses not only the aromaticity inherent in macrocyclic (4n+2)-site conjugation circuits but also the antiaromaticity inherent in macrocyclic (4n±1)-site circuits. Comparative study of superaromaticity in multilayered coronoid hydrocarbons revealed that not only SSE but also the HOMO contribution to SSE is minimized in odd-layered coronoids.