Effects of conjugated linoleic acids and dietary concentrate proportion on performance, milk composition, milk yield and metabolic parameters of periparturient dairy cows

Arch Anim Nutr. 2013 Jun;67(3):185-201. doi: 10.1080/1745039X.2013.793049. Epub 2013 May 16.

Abstract

The study aimed to examine effects of supplemented conjugated linoleic acids (CLA) to periparturient cows receiving different concentrate proportions ante partum (a.p.) to investigate CLA effects on lipid mobilisation and metabolism. Compared to adapted feeding, a high-concentrate diet a.p. should induce a ketogenic metabolic situation post partum (p.p.) to better understand how CLA works. Sixty-four pregnant German Holstein cows had ad libitum access to partial mixed rations 3 weeks prior to calving until day 60 p.p. Ante partum, cows received control fat (CON) or a CLA supplement at 100 g/d, either in a low-concentrate (CON-20, CLA-20) or high-concentrate diet (CON-60, CLA-60). Post partum, concentrate proportion was adjusted, while fat supplementation continued. After day 32 p.p., half of the animals of CLA-groups changed to CON supplementation (CLA-20-CON, CLA-60-CON). A ketogenic metabolic situation p.p. was not achieved and therefore impacts of CLA could not be examined. Live weight, milk yield and composition, blood parameters remained unaffected by the treatments. Only a slightly reduced milk fat yield (not significant) was recorded for Group CLA-20. The proportion of trans-10,cis-12 (t10,c12) CLA in milk fat was significantly increased in CLA-groups compared to CON-groups. With the exception of a reversible CLA effect on milk fat in Group CLA-20, no post-treatment effects occurred. Dry matter intake (DMI) of Group CLA-60 was highest before calving, resulting in a significantly improved estimated energy balance after calving. Ante partum, net energy intakes were significantly increased in high-concentrate groups. Overall, supplemented CLA preparation did not relieve metabolism and lipid mobilisation of early lactating cows. But feeding CLA in a high-concentrate diet a.p. seems to increase DMI and thereby improve the energy balance of cows immediately after calving.

Publication types

  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Cattle / physiology*
  • Diet / veterinary*
  • Energy Metabolism
  • Female
  • Lactation / drug effects*
  • Lactation / physiology
  • Linoleic Acids, Conjugated / pharmacology*
  • Milk / chemistry
  • Milk / metabolism*
  • Peripartum Period
  • Pregnancy
  • Time Factors

Substances

  • Linoleic Acids, Conjugated