p38/AP-1 pathway in lipopolysaccharide-induced inflammatory responses is negatively modulated by electrical stimulation

Mediators Inflamm. 2013:2013:183042. doi: 10.1155/2013/183042. Epub 2013 Apr 14.

Abstract

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2 production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF- α and PGE2 and the expression of TNF- α and COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cells, Cultured
  • Cyclooxygenase 2 / genetics
  • Cyclooxygenase 2 / metabolism
  • Dinoprostone / genetics
  • Dinoprostone / metabolism
  • Electric Stimulation*
  • Humans
  • Imidazoles / pharmacology
  • Inflammation / chemically induced
  • Inflammation / metabolism*
  • Inflammation / therapy*
  • Lipopolysaccharides / toxicity*
  • Macrophages, Peritoneal / drug effects
  • Macrophages, Peritoneal / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Nitric Oxide / metabolism
  • Pyridines / pharmacology
  • Transcription Factor AP-1 / genetics
  • Transcription Factor AP-1 / metabolism*
  • Tumor Necrosis Factor-alpha / metabolism
  • p38 Mitogen-Activated Protein Kinases / genetics
  • p38 Mitogen-Activated Protein Kinases / metabolism*

Substances

  • Imidazoles
  • Lipopolysaccharides
  • Pyridines
  • Transcription Factor AP-1
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide
  • Cyclooxygenase 2
  • p38 Mitogen-Activated Protein Kinases
  • Dinoprostone
  • SB 203580