Evaluation of macroporous and microporous carriers for CHO-K1 cell growth and monoclonal antibody production

J Microbiol Biotechnol. 2013 Sep 28;23(9):1308-21. doi: 10.4014/jmb.1304.04011.

Abstract

The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHOK1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average 1.85 ± 0.11 × 10(6) cells/ml against 0.60 ± 0.08 × 10(6) cells/ ml for CultiSpher-S), mAb production (2.04 ± 0.41 μg/ml against 0.99 ± 0.35 μg/ml for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, 4 × 10(5) cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / biosynthesis*
  • CHO Cells / cytology
  • CHO Cells / metabolism*
  • Cell Culture Techniques / instrumentation
  • Cell Culture Techniques / methods*
  • Cell Proliferation*
  • Cricetinae
  • Cricetulus
  • Microspheres

Substances

  • Antibodies, Monoclonal