Osteocalcin (OCN), a marker of osteoblast activity, has been implicated in the regulation of energy metabolism by the skeleton and thus may affect body fat measures.
Objective: To examine the relationships of OCN to body fat measures and whether they vary according to markers of energy and vitamin D metabolism.
Design and methods: Data were obtained from 58 obese adolescents aged 13-17.9 years (38 females, 8 black or African-American). Total fat mass (FM) [dual X-ray absorptiometry (DXA)] and visceral adipose tissue (VAT) [computerized axial tomography (CT)] were calculated. Blood tests included leptin, OCN, 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), thyroid function tests, and triglycerides. Markers of glucose metabolism were obtained from fasting and OGTT samples.
Results and conclusions: Adolescents with 25(OH)D <20 ng mL(-1) were considered deficient (n = 17/58); none had high PTH (PTH ≥ 65 pg mL(-1) ). OCN was associated with lower VAT (-84.27 ± 33.89 mm(2) ) and BMI (-0.10 ± 0.05 kg m(-2) ), not FM (P = 0.597) in a core model including age, sex, race, geographic latitude, summer, height z-score, and tanner stage. Adding 25(OH)D deficiency and PTH attenuated the inverse association of OCN to VAT. There was a significant interaction of OCN and 25(OH)D deficiency on FM (0.37 ± 0.18 kg, P = 0.041) and BMI (0.28 ± 0.10 kg m(-2) , P = 0.007) in this adjusted model, which was further explained by leptin. Adding A1C to the core model modified the relationship of OCN to VAT (-93.08 ± 35.05 mm(2) , P = 0.011), which was further explained by HOMA-IR. In summary, these findings provide initial evidence for a relationship between OCN and body fat measures that is dependent on energy metabolism and vitamin D status among obese adolescents.
Copyright © 2012 The Obesity Society.