Abstract
QSOX1 (quiescin sulfhydryl oxidase 1) efficiently catalyses the insertion of disulfide bonds into a wide range of proteins. The enzyme is mechanistically well characterized, but its subcellular location and the identity of its protein substrates remain ill-defined. The function of QSOX1 is likely to involve disulfide formation in proteins entering the secretory pathway or outside the cell. In the present study, we show that this enzyme is efficiently secreted from mammalian cells despite the presence of a transmembrane domain. We identify internal cleavage sites and demonstrate that the protein is processed within the Golgi apparatus to yield soluble enzyme. As a consequence of this efficient processing, QSOX1 is probably functional outside the cell. Also, QSOX1 forms a dimer upon cleavage of the C-terminal domain. The processing of QSOX1 suggests a novel level of regulation of secretion of this potent disulfide catalyst and producer of hydrogen peroxide.
Publication types
-
Research Support, Non-U.S. Gov't
MeSH terms
-
Amino Acid Sequence
-
Animals
-
Biocatalysis
-
CHO Cells
-
Cell Line
-
Cricetinae
-
Cricetulus
-
Dimerization
-
Epitopes / chemistry
-
Epitopes / genetics
-
Epitopes / metabolism
-
Golgi Apparatus / metabolism*
-
Green Fluorescent Proteins / chemistry
-
Green Fluorescent Proteins / genetics
-
Green Fluorescent Proteins / metabolism
-
Humans
-
Isoenzymes / chemistry
-
Isoenzymes / genetics
-
Isoenzymes / metabolism
-
Oxidoreductases Acting on Sulfur Group Donors / chemistry
-
Oxidoreductases Acting on Sulfur Group Donors / genetics
-
Oxidoreductases Acting on Sulfur Group Donors / metabolism*
-
Peptide Fragments / chemistry
-
Peptide Fragments / genetics
-
Peptide Fragments / metabolism
-
Protein Processing, Post-Translational
-
Protein Structure, Tertiary
-
Protein Transport
-
Proteolysis
-
Recombinant Fusion Proteins / chemistry
-
Recombinant Fusion Proteins / metabolism
-
Solubility
Substances
-
Epitopes
-
Isoenzymes
-
Peptide Fragments
-
Recombinant Fusion Proteins
-
Green Fluorescent Proteins
-
Oxidoreductases Acting on Sulfur Group Donors
-
QSOX1 protein, human