A secondary epidermal growth factor receptor (EGFR) mutation, the substitution of threonine 790 with methionine (T790M), leads to acquired resistance to reversible EGFR-tyrosine kinase inhibitors (EGFR-TKIs). A non-invasive method for detecting T790M mutation would be desirable to direct patient treatment strategy. Plasma DNA samples were obtained after discontinuation of gefitinib or erlotinib in 75 patients with non-small cell lung cancer (NSCLC). T790M mutation was amplified using the SABER (single allele base extension reaction) technique and analyzed using the Sequenom MassARRAY platform. We examined the T790M mutation status in plasma samples obtained after treatment with an EGFR-TKI. The SABER assay sensitivity using mixed oligonucleotides was determined to be 0.3%. The T790M mutation was detected in 21 of the 75 plasma samples (28%). The presence of the T790M mutation was confirmed by subcloning into sequencing vectors and sequencing in 14 of the 21 samples (66.6%). In this cohort of 75 patients, the median progression-free survival (PFS) of the patients with the T790M mutation (n = 21) was not statistically different from that of the patients without the mutation (n = 54, P = 0.94). When patients under 65 years of age who had a partial response were grouped according to their plasma T790M mutation status, the PFS of the T790M-positive patients (n = 11) was significantly shorter than that of the T790M-negative patients (n = 29, P = 0.03). The SABER method is a feasible means of determining the plasma T790M mutation status and could potentially be used to monitor EGFR-TKI therapy.
© 2013 Japanese Cancer Association.