Sialyltransferases have received much attention recently as they are frequently up-regulated in cancer cells. However, the role played by each sialyltransferase in tumour progression is still unknown. α2,3-Sialyltransferases ST3Gal III and ST3Gal IV are involved in sialyl-Lewis(x) (SLe(x)) synthesis. Given that the role of ST3Gal III in pancreatic adenocarcinoma cells has been previously reported, in this study we have focused on investigating the role of ST3Gal IV in the acquisition of adhesive, migratory and metastatic capabilities and, secondly, in analyzing the expression of ST3Gal III and ST3Gal IV in pancreatic adenocarcinoma tissues versus control tissues. ST3Gal IV overexpressing pancreatic adenocarcinoma MDAPanc-28 cell lines were generated. They showed a heterogeneous increase in SLe(x), and enhanced E-selectin adhesion and migration. Furthermore, when injected into nude mice, increased metastasis and decreased survival were found in comparison with controls. The behaviour of MDAPanc-28 ST3Gal IV overexpressing cells in these processes was similar to the already reported MDAPanc-28 ST3Gal III overexpressing cells. Furthermore, pancreatic adenocarcinoma tissues tended to express high levels of ST3Gal III and ST3Gal IV together with other fucosyltransferase genes FUT3 and FUT6, all involved in the last steps of sialyl-Lewis(x) biosynthesis. In conclusion, both α2,3-sialyltransferases are involved in key steps of pancreatic tumour progression processes and are highly expressed in most pancreatic adenocarcinoma tissues.
Keywords: Metastasis; Migration; Pancreatic adenocarcinoma; Sialyl-Lewis(x); α2,3-Sialyltransferases.
Copyright © 2013 Elsevier Ltd. All rights reserved.