Purpose: The purpose of this work was to achieve detailed biomaterials characterization of a drug delivery system for local cancer treatment based on electrospun titanocene trichloride-loaded resorbable polycaprolactone (PCL) fibers.
Methods: The PCL fibers were characterized for their structural, morphologic and physical properties. The drug release kinetics of the titanocene complex was investigated at different concentrations, to obtain a set of correlations between structure and tuneable release. After exposing cancer cells directly onto the surface of PCL fibers, the anti-proliferative effects of titanocene-loaded PCL were assessed by: (i) counting viable cells via live/dead staining methods, and (ii) analyzing cell apoptosis.
Results and conclusions: Titanocene concentration influenced fiber diameters reduced for PCL filled with titanocene. X-ray analysis suggested that the titanocene, encapsulated into the PCL fibers, is not allowed to crystallize and exists as amorphous aggregates into the fibers. The titanocene release curves presented two stages unrelated to PCL degradation: an initial burst release followed by a release linear with time, extending for a very long time. All of the titanocene-loaded fibers revealed sustained drug release properties suggesting their potential clinical applicability for the treatment of local cancer diseases.