Background: Our aim was to assess whether the Lauge-Hansen (LH) and the Muller AO classification systems for ankle fractures radiographically correlate with in vivo injuries based on observed mechanism of injury.
Methods: Videos of potential study candidates were reviewed on YouTube.com. Individuals were recruited for participation if the video could be classified by injury mechanism with a high likelihood of sustaining an ankle fracture. Corresponding injury radiographs were obtained. Injury mechanism was classified using the LH system as supination/external rotation (SER), supination/adduction (SAD), pronation/external rotation (PER), or pronation/abduction (PAB). Corresponding radiographs were classified by the LH system and the AO system.
Results: Thirty injury videos with their corresponding radiographs were collected. Of the video clips reviewed, 16 had SAD mechanisms and 14 had PER mechanisms. There were 26 ankle fractures, 3 nonfractures, and 1 subtalar dislocation. Twelve fractures with SAD mechanisms had corresponding SAD fracture patterns. Five PER mechanisms had PER fracture patterns. Eight PER mechanisms had SER fracture patterns and 1 had SAD fracture pattern. When the AO classification was used, all 12 SAD type injuries had a 44A type fracture, whereas the 14 PER injuries resulted in nine 44B fractures, two 44C fractures, and three 43A fractures.
Conclusion: When injury video clips of ankle fractures were matched to their corresponding radiographs, the LH system was 65% (17/26) consistent in predicting fracture patterns from the deforming injury mechanism. When the AO classification system was used, consistency was 81% (21/26). The AO classification, despite its development as a purely radiographic system, correlated with in vivo injuries, as based on observed mechanism of injury, more closely than did the LH system.
Level of evidence: Level IV, case series.
Keywords: AO classification system; Lauge-Hansen classification system; YouTube; ankle fracture classification; injury videos.