Performance of KCl:Eu2+ storage phosphor dosimeters for low-dose measurements

Phys Med Biol. 2013 Jun 21;58(12):4357-66. doi: 10.1088/0031-9155/58/12/4357. Epub 2013 Jun 5.

Abstract

Recent research has demonstrated that europium doped potassium chloride (KCl:Eu(2+)) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter chips. The purposes of this work are to quantify the performance of KCl:Eu(2+) prototype dosimeters for low-dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu(2+) dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu(2+) prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post-irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low-dose region with only a 20% loss of sensitivity comparing to a fresh sample (zero Gy history). The energy dependence encountered during low-dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu(2+-)-based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy).

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Europium / chemistry*
  • Potassium Chloride / chemistry*
  • Radiation Dosage*
  • Radiometry / methods*
  • Time Factors

Substances

  • Europium
  • Potassium Chloride