Aims: The aim of this study was to assess the effect of the cytochrome P450 (CYP) 3A4 and organic anion-transporting polypeptide (OATP) 1B1 inhibitor clarithromycin on the pharmacokinetics of bosentan. We also aimed to evaluate the impact of CYP2C9 and SLCO1B1 (encoding for OATP1B1) genotypes and their combination.
Methods: We assessed the effect of the OATP and CYP3A inhibitor clarithromycin on bosentan pharmacokinetics at steady state and concurrently quantified changes of CYP3A activity using midazolam as a probe drug. Sixteen healthy volunteers received therapeutic doses of bosentan (125 mg twice daily) for 14 days and clarithromycin (500 mg twice daily) concomitantly for the last 4 days, and bosentan pharmacokinetics was assessed on days 1, 10 and 14.
Results: Clarithromycin significantly increased bosentan area under the plasma concentration-time curve of the dosing interval 3.7-fold and peak concentration 3.8-fold in all participants irrespective of the genotype. Clarithromycin also reduced CYP3A activity (midazolam clearance) in all participants; however, these changes were not correlated to the changes of bosentan clearance.
Conclusions: Clarithromycin substantially increases the exposure to bosentan, suggesting that dose reductions may be necessary.
Keywords: CYP2C9; SLCO1B1; bosentan; clarithromycin; pharmacokinetics; polymorphism.
© 2013 The British Pharmacological Society.