Hereditary Hemorrhagic Telangiectasia-1 (HHT-1) is a vascular disease caused by mutations in the endoglin (Eng)/CD105 gene. The objective of this study was to quantify the oxidative state of a rodent model of HHT-1 using an optical imaging technique. We used a cryofluorescence imaging instrument to quantitatively assess tissue metabolism in this model. Mitochondrial redox ratio (FAD/NADH), FAD RR, was used as a quantitative marker of the metabolic status and was examined in the kidneys, and eyes of wild-type and Eng +/- mice. Kidneys and eyes from wild-type P21, 6W, and 10M old mice showed, respectively, a 9% (±2), 24% (±0.4), 15% (±1), and 23% (±4), 33% (±0.6), and 30% (±2) change in the mean FAD RR compared to Eng +/- mice at the same age. Thus, endoglin haploinsufficiency is associated with less oxidative stress in various organs and mitigation of angiogenesis.
Keywords: Endoglin; FAD; Hereditary Hemorrhagic Telangiectasia-1; NADH; optical imaging; oxidative stress; oxygen-induced ischemic retinopathy; redox ratio.
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.