New evidence for positive selection helps explain the paternal age effect observed in achondroplasia

Hum Mol Genet. 2013 Oct 15;22(20):4117-26. doi: 10.1093/hmg/ddt260. Epub 2013 Jun 4.

Abstract

There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10(-6). We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Achondroplasia / genetics*
  • Aged, 80 and over
  • Aging
  • Computer Simulation
  • Germ-Line Mutation
  • Humans
  • Male
  • Models, Genetic
  • Paternal Age*
  • Polymorphism, Single Nucleotide
  • Receptor, Fibroblast Growth Factor, Type 3 / genetics*
  • Selection, Genetic*
  • Spermatogonia / cytology
  • Spermatogonia / metabolism
  • Testis / metabolism
  • Testis / pathology

Substances

  • Receptor, Fibroblast Growth Factor, Type 3