Background: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) are a significant cause of mortality of COPD patients, and pose a huge burden on healthcare. One of the major causes of AECOPD is airway bacterial (e.g. nontypeable Haemophilus influenzae [NTHi]) infection. However, the mechanisms underlying bacterial infections during AECOPD remain poorly understood. As neutrophilic inflammation including increased release of human neutrophil elastase (HNE) is a salient feature of AECOPD, we hypothesized that HNE impairs airway epithelial defense against NTHi by degrading airway epithelial host defense proteins such as short palate, lung, and nasal epithelium clone 1 (SPLUNC1).
Methodology/main results: Recombinant human SPLUNC1 protein was incubated with HNE to confirm SPLUNC1 degradation by HNE. To determine if HNE-mediated impairment of host defense against NTHi was SPLUNC1-dependent, SPLUNC1 protein was added to HNE-treated primary normal human airway epithelial cells. The in vivo function of SPLUNC1 in NTHi defense was investigated by infecting SPLUNC1 knockout and wild-type mice intranasally with NTHi. We found that: (1) HNE directly increased NTHi load in human airway epithelial cells; (2) HNE degraded human SPLUNC1 protein; (3) Recombinant SPLUNC1 protein reduced NTHi levels in HNE-treated human airway epithelial cells; (4) NTHi levels in lungs of SPLUNC1 knockout mice were increased compared to wild-type mice; and (5) SPLUNC1 was reduced in lungs of COPD patients.
Conclusions: Our findings suggest that SPLUNC1 degradation by neutrophil elastase may increase airway susceptibility to bacterial infections. SPLUNC1 therapy likely attenuates bacterial infections during AECOPD.