Mutants of the wheat pathogenic fungus Stagonospora nodorum lacking G-protein subunits display a variety of phenotypes including melanization defects, primary metabolic changes and a decreased ability to sporulate. To better understand the causes of these phenotypes, Stagonospora nodorum strains lacking a Gα, Gβ or Gγ subunit were compared to a wild-type strain using metabolomics. Agar plate growth at 22 °C revealed a number of fundamental metabolic changes and highlighted the influential role of these proteins in glucose utilization. A further characterization of the mutants was undertaken during prolonged storage at 4 °C, conditions known to induce sporulation in these sporulation-deficient signalling mutants. The abundance of several compounds positively correlated with the onset of sporulation including the dissacharide trehalose, the tryptophan degradation product tryptamine and the secondary metabolite alternariol; metabolites all previously associated with sporulation. Several other compounds decreased or were absent during sporulation. The levels of one such compound (Unknown_35.27_2194_319) decreased from being one of the more abundant compounds to absence during pycnidial maturation. This study has shed light on the role of G-protein subunits in primary metabolism during vegetative growth and exploited the cold-induced sporulation phenomenon in these mutants to identify some key metabolic changes that occur during asexual reproduction.