Prophylactic human papillomavirus (HPV) vaccines are administered in vaccination programs, targeted at young adolescent girls before sexual exposure, and in catch-up programs for young women in some countries. All the data indicate that HPV-virus-like particles (VLPs) effectively prevent papillomavirus infections with a high level of antibodies and safety. Since non-vaccine HPV types are responsible for about 30% of cervical cancers, cross-protection would potentially enhance primary cervical cancer prevention efforts. High levels of specific neutralizing antibodies can be generated after immunization with HPV VLPs. Immunity to HPV is type-specific. However, if we consider the phylogenetic tree including the different HPV types, we realize that a certain degree of cross-protection is possible, due to the high homology of some viral types with vaccine ones. The assessment of cross-protective properties of HPV vaccines is an extremely important matter, which has also increased public health implications and could add further value to their preventive potential. The impact of cross-protection is mostly represented by a reduction of cervical intraepithelial neoplasia CIN2-3 more than what expected. In this article we review the mechanisms and the effectiveness of Bivalent (HPV-16/-18) and Quadrivalent (HPV-6/-11/-16/-18) HPV vaccine cross-protection, focusing on the critical aspects and the potential biases in clinical trials, in order to understand how cross-protection could impact on clinical outcomes and on the new perspectives in post-vaccine era.
Keywords: Bivalent vaccine; Cross-protection; Human papillomavirus; Quadrivalent vaccine.
Copyright © 2013 Elsevier Inc. All rights reserved.