Severe inbreeding and small effective number of breeders in a formerly abundant marine fish

PLoS One. 2013 Jun 7;8(6):e66126. doi: 10.1371/journal.pone.0066126. Print 2013.

Abstract

In contrast to freshwater fish it is presumed that marine fish are unlikely to spawn with close relatives due to the dilution effect of large breeding populations and their propensity for movement and reproductive mixing. Inbreeding is therefore not typically a focal concern of marine fish management. We measured the effective number of breeders in 6 New York estuaries for winter flounder (Pseudopleuronectes americanus), a formerly abundant fish, using 11 microsatellite markers (6-56 alleles per locus). The effective number of breeders for 1-2 years was remarkably small, with point estimates ranging from 65-289 individuals. Excess homozygosity was detected at 10 loci in all bays (FIS = 0.169-0.283) and individuals exhibited high average internal relatedness (IR; mean = 0.226). These both indicate that inbreeding is very common in all bays, after testing for and ruling out alternative explanations such as technical and sampling artifacts. This study demonstrates that even historically common marine fish can be prone to inbreeding, a factor that should be considered in fisheries management and conservation plans.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles
  • Animals
  • Bays
  • Confidence Intervals
  • Fishes / genetics
  • Fishes / growth & development*
  • Genetic Loci / genetics
  • Genetic Variation
  • Geography
  • Heterozygote
  • Inbreeding*
  • Microsatellite Repeats / genetics
  • New York
  • Sample Size
  • Seawater*

Grants and funding

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Genetic analyses were supported by the Institute for Ocean Conservation Science with operational funds from The Pew Charitable Trusts. Microsatellite amplification was carried out in the Pritzker Laboratory for Molecular Systematics and Evolution operated with support from the Pritzker Foundation. Shinnecock Bay fish were sampled during the Shinnecock Bay Restoration Project, which is funded by the Laurie Landeau Foundation and matched by a gift from the Simons Foundation. Further funding was granted by the Saltonstall-Kennedy Grant Program (NOAA) and a NY DOS grant for field work in Hempstead Bays.